Part A: Intro to Coordination Compounds

Fi	Fill in the blanks					
1.	A contains a central metal ion bound to one or more ligands.					
2.	2. A is a Lewis base (electron pair donor) that forms a bond with the metal.					
3.	When a complex ion combines with one or more(ions of opposite charge that are not					
	acting as ligands). The resulting neutral compound is called a					
4.	Ligands that donate only one election pair to the central metal are called					
	Provide an example:					

Ligands that have the ability to donate two pairs of electrons (from two different atoms) to the metal; these are called ______.

Provide all example.	Provide an	example:
----------------------	------------	----------

Part B: Coordination Number

- 6. What is the coordination number of the central metal ion in $[Fe(H_2O)_4(CN)_2]CI$?
- 7. What is the coordination number of the central metal ion in $[Co(C_2O_4)_2(OH)_2]^3$?
- 8. What is the coordination number of the central metal ion in $[Co(en)_3]^{3+}$?

Part C: Names and Formulas of Coordination Compounds

9. What is the name of the compound having the formula $[Cr(en)_2(NH_3)_2]Cl_2$?

10. What is the name of the compound having the formula $[Fe(CO)_6](NO_3)_3$?

11.What is the name of the compound having the formula K₃[CoCl₆]?

12. What is the formula for dibromobis(ethylenediamine)titanium(IV) bromide?

13. What is the formula for potassium diamminetetrachlorovanadate(III)?

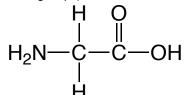
Part D: Isomers

14. Match the following formulas to the type of isomers.

$[Fe(NH_3)_5Br]SO_4$ and $[Fe(NH_3)_5SO_4]Br$	Geometric isomers
cis-[Co(NH ₃) ₄ (H ₂ O) ₂]Cl ₂ and trans-[Co(NH ₃) ₄ (H ₂ O) ₂]Cl ₂	Coordination isomers
fac-[Cr(CN) ₃ (H ₂ O) ₃] and mer-[Cr(CN) ₃ (H ₂ O) ₃]	Linkage isomers
$[Cr(H_2O)_5(NO_2)]SO_4$ and $[Cr(H_2O)_5(ONO)]SO_4$	Geometric isomers

- 15. Draw the structures for the following and determine if there are isomers possible and what type of isomers.
 - a) Square planar $[Pt(CN)_2Cl_2]^{2-}$

b) $[Fe(CN)_3(H_2O)_3]$


c) $[Cr(H_2O)_5(SCN)]^+$

d) [Ni(en)₃]²⁺

e) tetrahedral [AuF2Cl2]-

f) [Pt(NH₃)F₅]³⁻

16. Here is a tough one but a good biological example. Amino acids, such as glycine (gly), form complexes with the trace metal ions found in the bloodstream. Glycine, whose structure is shown below, acts as a bidentate ligand coordinating with the N atom and the O atom of the OH group (when coordination occurs to the Metal, the H is no longer is attached to the OH, it is deprotonated).

- a) Draw the possible isomers of [Ni(gly)₂]. This molecule is square planar and there are 2 isomers. Label the type of isomers underneath your drawing.
- b) Draw the possible isomers of [Zn(gly)₂]. This molecule is tetrahedral and there are 2 optical isomers.

c) Draw the possible isomers of [Fe(gly)₃]. Here there are geometric and optical isomers. Label what type of geometric isomers.